학문과 산업현장의 기술 수요 괴리는 어제오늘 일이 아니다. 인공지능(AI) 인재의 산실인 컴퓨터 전공도 예외는 아니다. ‘기본기’를 강조하며 커리큘럼 혁신을 꺼리는 학교 측과, “처음부터 다시 가르쳐야 하는 형편”이라는 기업 간 시각차가 AI시대를 맞아 더 심화된 것이다.
‘자고 일어나면 달라져 있다’는 말이 나올 정도로 AI 기술의 진화는 가속화하고 있다. 국내 주요 대학 컴퓨터공학과의 전공 구성부터가 그렇다. 대다수가 기초 수준 선택과목으로 AI 수업을 편성하고 있다. 서울대는 올해 1학기 ‘딥러닝의 기초’ 과목을, KAIST는 ‘인공지능개론’ ‘기계학습’ 등을 전공선택으로 개설했다. 고려대 성균관대 연세대 등도 ‘딥러닝’ ‘기계학습’ ‘인공지능개론’ 강좌를 열었다. 다만 개설 과목 수는 대부분 1개에서 3개 정도로 나타났다. AI를 바라보는 ‘관심’의 정도가 드러난 셈이다.
대학들이 AI 관련 커리큘럼을 고민하기 시작한 건 2016년 ‘알파고 사태’ 때부터다. 상당한 시간이 흘렀음에도 강좌 개설이 미미한 건 운신의 폭이 좁은 국내 컴퓨터공학과 커리큘럼의 특성이 숨어 있다. ‘공교육 부실’의 여파로 기초도 안 되는 입학생이 대다수이다 보니 대학 역시 AI 같은 심화 내용을 반영할 여유가 없다는 것이다.
한 수도권 대학 컴퓨터공학과 교수는 “대학 입학 전까지 중·고교에서 SW에 관해 제대로 배우는 것이 없으니, 매년 코딩 연습 같은 기초에 시간을 할애해야 한다”고 말했다. 2학년까지 프로그래밍 기초와 하드웨어 과목 등 기본기를 수강하고 전공필수까지 챙기다 보면 졸업까지 자유롭게 선택해서 들을 수 있는 전공 강좌는 채 5개가 되지 않는 경우도 허다하다.
교수 인력과 인프라의 문제도 따른다. AI 교육은 고사하고, 컴퓨터 공학 교육의 질까지 위협받는 수준이다.
최근 수도권에선 고려대의 데이터과학과, 한양대의 데이터사이언스학과 등 첨단 산업 학과의 신설이 잇따르고 있다. 정부 주도 하에 주요 대학의 'AI대학원' 역시 속속 문을 열고 있는 상황이다. 대부분 SW가 중심이 되는 학위과정들이다. 하지만 늘어나는 교육 과정의 속도와 대비해 담당 교수들의 수는 크게 늘지 못하고 있다는 것이 중론이다. 투자가 산발적으로 진행되고 있다는 비판이 거세지고 있다.
외려 기존 컴퓨터공학과 교수를 겸임이나 파견 형태로 앉히는 경우도 빈번하다. 서울대는 1년 사이 AI 유관 전공이 폭발적으로 생겨나며 업무가 과중되고 있다. 서울대 공과대학의 한 관계자는 "최근 AI 협동과정, AI 연합전공, AI반도체 과정 등 셀 수 없는 과정이 생겨났는데, 교수 인력 등은 더 뽑지 않으며 본래 컴퓨터공학과 강의까지 영향이 미치는 상황"이라고 전했다.
산업 현장의 불만은 갈수록 커지고 있다. 한 정보기술(IT) 대기업 인사담당 임원은 “사실 원천 기술을 개발하는 특출난 인재보다 AI 솔루션을 이해하고 관리하는 수준의 ‘AI 엔지니어’와 기술을 이해하는 영업직군이 더 많이 필요하다”며 “최소 6개월에서 1년은 다시 가르친다고 생각하며 뽑는다”고 했다.
대기업들의 재직자 대상 ‘AI 재교육’은 확대 추세다. 현대모비스의 ‘AIM 프로젝트’는 약 5개월간 기존 업무를 배제시키고 전문기관 교육과 현장 AI 프로젝트를 수행하게끔 한다. LG 역시 100명 가량의 인원을 사내 교육 기관인 LG 인화원에서 교육하는 ‘AI 고급 문제 해결 과정'을 진행한다. ‘맞춤형 인재’를 자체적으로 길러낸다는 목표다.
학부생들은 심지어 대학원 AI 강좌까지 찾아나서고 있다. 대학과 기업 사이의 간극에서, 스스로 실력과 인재상을 갖추기 위한 ‘자구책’을 마련한 것이다. 한 컴퓨터공학과 교수는 “일부 AI 과목은 학부생이 30%도 차지한다”며 “학부에 AI 전문 강좌가 적다보니 매 학기 벌어지는 현상”이라고 밝혔다.
이시은 기자 see@hankyung.com